
 1 

From a Conceptual Ontology to the  

TELOS Operational System   
 

Gilbert Paquette and François Magnan 

gilbert.paquette@licef.ca; francois.magnan@licef.ca  

CICE Research Chair, LICEF Research Center, Télé-université  

 

Abstract. In the last four years, within the LORNET research network, the LICEF team has 

been designing and developing TELOS, an innovative operation system for eLearning and 

knowledge management environments. This communication will present the main steps that 

have led to the actual system, as a contribution to the general software engineering 

methodology. We will first briefly present the background and initial requirements for TELOS. 

Then, we will summarize an ontology that captures the conceptual architecture of the system. 

Finally, we will present the transition of this conceptual ontology towards the technical 

ontology that actually drives the system. In conclusion, we will underline the main advantages 

of this method for building ontology-driven systems such as TELOS. 

Introduction 

At the beginning of the present decade, new sets of concepts had emerge from various fields such as Web-

based layered and programmable learning portals, service oriented frameworks, model-driven and 

ontology-driven architectures, multi-actor scenarios and workflows. These main technological trends have 

deeply influence our work to produce more flexible, powerful, yet user-friendly elearning environments. 

One level up: aggregating custom-made platform or portals. Just as integrated suites of generic software 

have been replaced by integration mechanisms at the operating system level, we aimed to design TELOS 

on the same interoperability principles.  Similarly, the TELelearning Operting System (TELOS) 

architecture aims to extend the portal assembly mechanisms to enable technologists to built their own 

platforms (or eLearning/Knowledge Management desktops), creating a variety of distributed learning 

environments or models such as electronic performance support systems (EPSS), communities of 

practice, formal on-line training and technology-based classroom, and different forms of blended learning 

or knowledge management environments.        

As the project was starting, Service-oriented frameworks [5] such as ELF [26] or OKI [27] were proposed 

to lower the costs of integration, and to encourage more flexibility and simplification of software 

configurations. Such a framework could also create a broad vocabulary that could be extended to an 

ontology. The TELOS conceptual framework presented in section 2 would also be designed as a service 

oriented framework, facilitating the aggregation of services to create custom-made platforms and 

applications. 

This has led us naturally to a model-driven, ontology-driven architectures [8]. The main gain of model-

driven architectures is the generation of the code from the model in successive layers, the model being 

reusable in other contexts with few adaptations. Ontology-driven architectures [6, 7] add to this paradigm 

an explicit ontology structuring of the objects processed by the system, acting as its executable blueprint. 

They therefore tend to maximize the platform independent model (PIM), minimizing the platform specific 

(PSM) and Code models. This programming style follows a pattern analogous to the Prolog programming 



 2 

language. Here the declarative part is encoded in the ontology, in our case through OWL-DL statements. 

The execution part is encoded in parameterized queries prepared for an inference engine that processes the 

queries. The result of a query is to trigger the execution of some of the services. 

Another key architectural idea is the concept of multi-actor learning designs and workflows, as the main 

structure of the various environments produced using TELOS.   We have pointed out elsewhere some 

weaknesses of our initial virtual campus models [**] and most commercial platforms, where actors can 

interact within mono-actor environment that do not really take in account collaborative processes. This 

question is now solved partly in workflows modelling languages such as BPMN, the Business Process 

Modeling Notation [18], and in eLearning design specifications like IMS-LD [16]. Multi-actor learning 

designs and workflows provide a central aggregation mechanism grouping actors, the operation they 

perform and the resources they use or produce from or for other actors. A multi-actor scenario editor and 

execution engine was planned as a central piece of TELOS [9, 10]. 

In the first section we will revisit our initial methodology and its main products. The second section 

presents the conceptual framework of the TELOS system, and the conceptual ontology derived from it. 

The third section will summarize the technical architecture of the system.  The fourth section will present 

some use cases that illustrate the exploitation of the technical ontology. The last section will summarize 

the whole process and discuss its main features. 

1. Rational Unified Process and Rapid Prototyping 

Initially, we have tailored the Rational Unified Process (RUP) [ ] to the needs of the project. RUP is an 
adaptable process framework that describes how to develop software effectively using proven techniques. 
While the RUP encompasses a large number of different activities, it is also intended to be tailored to 
select development processes appropriate to a particular software project or development organization.  

 

Figure 1 – TELOS development process. 



 3 

As shown on figure 1 our initial 
1
use of RUP was first focused on the business modeling and the 

requirements processes, each with a few cycles including phases of inception, elaboration, construction 

and transition. This has led to a set of architecture documents, the main one being the Use cases and 

software requirements documents (UC 1.0). Then the focus has moved to the Analysis and Design process 

with the construction of the Conceptual Architecture (CA 0.7) and the Conceptual Framework (CF 0.8) 

documents, which includes the TELOS Conceptual Ontology. The first two years followed the RUP quite 

closely but with long iteration cycles resulting in a set of architecture documents and throw-away 

prototypes TELOS-1 and TELOS-2. 

In the last three years, the team has reduced the length of the iterations, adopting a process closer to Rapid 

Prototyping in order to achieve workable prototypes. A number of Software Architecture (SA) documents 

have been written to support the implementation of the TELOS prototypes. TELOS-3 was the first 

evolutionary prototype on which we could build the following ones. Each year, a test bed was conducted 

where users would interact with the available prototype within a carefully planned test process. Prototypes 

2, 3 and 4 were demonstrated at the LORNET annual conferences. The last one, TELOS-5, is 

demonstrated at the ITS-08 conference. This evolution reflects the fact that TELOS is does not follow 

traditional software development processes, being considered as innovative, risky and ambitious by many 

persons, in other words, a research project. 

We will now briefly summarize the Use Cases Specifications and Requirements (UCR 1.0), and the 

TELOS Conceptual Framework (CF 0.9). These have been described more extensively in [10,11]. The 

UCR has undergone 10 iterations, from June 03 to December 04. It groups 30 use case diagrams and 

descriptions that are packaged as shown on figure 2. 

           

      

Figure 2: Resource life cycle and system cascade actors 

                                                      

1 LORNET is a five-year project ending in October 2008 grouping six Canadian research centers and over a hundred researchers, 

professionals and graduate students. TELOS is the main integration production produced within this project. 



 4 

The use cases at the four levels of the system describe how to build, administrate, use and support a Web-

based environment, each being used at each cascade level (rows on the figure 2). Level IV concerns 

mainly an engineer extending the TELOS Core that will be used by technologists. At Level III, a 

technologist uses the TELOS Core to produce a platform, technically called a Learning and Knowledge 

Management System (LKMS). At level II, a designer uses a platform, to build one or more Learning and 

Knowledge Management Applications (LKMA): courses, learning events, knowledge management 

workflows, etc. Finally at level I, using one of these applications, a learner will acquire knowledge and 

produce results (homeworks, documents, performance) that can be grouped in a portfolio or Learning and 

Knowledge Management Products (LKMP).  

Generic resource life cycle use cases (columns on figure 2) correspond to four sub-operations (phases) 

that traverse the cascade levels. In these, a resource is composed, managed (prepared) for use, used by its 

intended actors, and analyzed to provide assistance. These operations are generally performed in sequence 

at each of the cascade levels by corresponding actors called respectively composers, administrators, 

explorers (resource users) and facilitators (acting as analysts to provide assistance and feedback). These 

operations are generic, being applicable at any cascade level. For example a learner will have to search for 

resources in much the same ways as a designers, technologists or engineers, when they act as composer to 

produce respectively a LKMP, a LKMA, a LKMS or TELOS Core 

We can use different metaphors to describe these general processes. In a manufacturing metaphor, the 

resource life cycle corresponds to a process where a product passes through different productions 

operations. Within the system generation cascade, the TELOS Core is like a factory that produces 

machine components or complete machines; the products of this first factory are used to build machines 

that will be used in other factories (LKMSs) to build cars, aircrafts, etc. These transportation machines, 

will finally be used by their clients to produce some outcome (e.g. to travel). As a manufacture, the 

TELOS Core itself starts with a complete set of components to produce LKMS factories, but it will also 

be open to improvement, adding new processes and operations, to produce more versatile machines. 

Starting with this elaborated set of use cases, the conceptual architecture [12] and the conceptual 

framework [10] were build in the form of a service-oriented framework, bringing it closer to a possible 

implementation. Figure 3 present the main classes of services. 

• Kernel Communication services. The Virtual Campus model is a distributed architecture on the 

Internet. To become a node in the Virtual Campus, each user installs a kernel on his machine that 

provides basic communication services with other nodes where resources are distributed. These 

services include for example a service registry, the location of resources on the nodes of the 

network, connectors to provide communication with resources built using different technologies, 

protocol translation and so on. 

• Resource interfacing services .Basic resources are documents in a variety of media formats, tools 

to process documents, operations that can perform a process automatically and finally persons 

managing a set of activities on the network. All these resources usually will required to be 

interfaced in different way (by a communication agent for format translation, through 

encapsulation for tracing, etc.) in order to be reached and to participate in the learning and/or 

knowledge management processes 

• Resource life cycle services. These services provide a number of editors for a composer to build, 

adapt and aggregate resources, thus producing a model of the resource. Tools for an administrator 

to produce instances of the model, as well as interfaces to help users and facilitator interact with 

an environment instance. 

• Aggregate’ management services. These services provide management functionalities for the 

main aggregates (or Web portals) used in the Virtual Campus: Core, LKMSs, LKMAs and 

LKMPs portals. For example, they will help in the storage, modification, display, evolution and 



 5 

maintenance of versions of TELOS Core, the interoperability between platforms (LKMSs), the 

management of courses (LKMAs) and the LKMPs such as Portfolios. 

• Semantic services. These services enable users to query or edit semantic resources, for example 

ontologies or metadata, and to reference resources. Resource publication services enable users to 

package resources with their semantic references, enabling various kind of resource search, 

retrieval and launching. With these services a user can call upon federated or harvested search 

operations to jointly display documents, tools, operations (including activities and units-of-

learning) related to some domain knowledge and competencies. 

• Common services. We have grouped in this category all the lower level services that are called by 

the services in the preceding categories. They correspond to operations that all the actors need to 

make or called upon while participating in the Virtual Campus. 

 

 

Figure 3: The Virtual Campus Service Oriented Framework 

2. The TELOS Conceptual Ontology 

An important goal is to embed in the system technology-independent models, to help the system survive 

the rapid pace of technology evolution. For that purpose, the conceptual specifications of TELOS, 

expressed as an ontology, should not be kept apart from the code of the system as is usually done in 

software engineering. The TELOS system should be able to reuse ontologies as “conceptual programs”. In 

this vision, the conceptual models are not just prerequisite to the construction of the TELOS system; they 



 6 

are part of the system, as one of its most fundamental layer. These considerations motivated the need for 

an ontology-driven architecture (ODA). 

We have translated the use cases and the above service-oriented framework into an OWL-DL ontology. 

We have selected to use OWL-DL ontologies [13] for a number or reasons. It is one of the three Ontology 

Web Languages that are part of the growing set of World Wide Web consortium recommendations related 

to the Semantic Web. Of these three languages, OWL-DL has a wide expressivity and its foundation in 

Description Logic guarantees its computational completeness and decidability. Description Logic [14] is 

an important knowledge representation formalism unifying and giving a logical basis to the well known 

traditions of frame-based systems, semantic networks, object-Oriented representations, semantic data 

models, and formal specification systems. It thus provides an interesting logical framework to represent 

knowledge. On a more practical side, a growing number of software tools have been designed to process 

OWL-DL XML files and to put inference engines at work to query the ontology in order to execute 

processes in a system. 

The first graph of figure 4
2
 presents the upper level of the TELOS Conceptual ontology. In TELOS, the 

actors, the operations they perform and the resources they use or produce are all TELOS resources (shown 

on the graph by S “is-a-sort-of” links. They are represented as classes (rectangles) linked together with 

properties (hexagons) such as “perform” and “use or produce”.  

Some classes are further defined in sub-models that present sub-taxonomies of classes and their 

properties. The second graph of figure 4 shows the taxonomy of TELOS users and the corresponding 

operations they perform. The taxonomy of operation is further define in an Operations’ subgraph (not 

shown here) where the operations are linked with the services (handlers) presented on figure 3. Another 

sub-graph describes the taxonomy of resources, including the very important concept of “content” 

package, which is redefined as resources having semantic descriptions. This sub-graph is presented partly 

as the third graph on figure 4. 

 

 

                                                      

2 These graphs have been constructed using our MOT+OWL editor that exports to OWL-DL XML schemas [  ]  



 7 

 

 

Figure 4: Part of the Virtual Campus Conceptual Ontology 



 8 

3. From the Conceptual Ontology to the Technical Ontology Driving TELOS 

We now explain how the conceptual ontology was revised, simplified or expanded to build the TELOS 

technical ontology that is integrated as code to drive the operation of the system 

 

 

 

Figure 5: The upper layer of the TELOS technical ontology 



 9 

First, we had to capture the distributed aspects of TELOS by adding the concept of a “TELOS Node” that 

was not present in the Conceptual Ontology but defined in the Conceptual architecture. The TELOS 

Global bus enables the interoperability between different TELOS nodes abstracting their particular 

physical platform and their network configuration. By connecting the Global Bus of many TELOS nodes 

we form a dynamic peer-to-peer network. This network may contain special nodes called community 

controllers which are basically centralized repositories for resources.    

The first graph of figure 5 is the upper level of TELOS Technical ontology. It presents these concepts in 

relation to the concept of a TELOS resource which was the root of the former conceptual ontology. The 

second graph on figure 5 present a sub-model defining the concept of a TELOS Node, and the third one 

presents a more precise, upper level definition of a TELOS Resource very similar to the one in the 

Conceptual ontology. In these graphs, cardinality axioms (hexagons with numbers), disjoint axioms (Disj 

link) and functional property axioms have been added for more precision. This is essential because this 

ontology will have to respond to queries using an inference engine that do not tolerate ambiguity. 

In these upper layer graphs, we find the interrelations between the main concepts of Actors, Operations 

and Non-digital resources. The Actors’ and the Operations’ sub-ontologies are directly imported from the 

Conceptual ontology presented on figure 4.  The Non-digital resources’ sub-ontoloy has undergone more 

important changes. It is presented on figure 6. We see that implementation concepts have been added such 

as productID and locationURL. Each of five main sub-class: Documents, Atomic Resources, Actors, 

Aggregates and Digital Operations is detailed in other OWL-DL models. 

 

 

Figure 6: Part of the sub-ontology for Digital Resources 

 



 10

The resources are the persistent data of the TELOS node. The “Aggregates” sub-class is particularly 

important. This type of resource enables users to create new eLearning tools by gluing existing software 

components and other resources. It also enables users to model collaborative workflows or scenarios 

aggregating actors, the activities they perform and the documents, the software components they use or 

produce. 

The semantic layer is defined as presented in the Conceptual ontology on figure 4. It is where all TELOS 

concepts are declared and related together through logical constraints in the Technical ontology. It defines 

the global behavior of TELOS. The semantic layer also contains the domain ontologies created by users 

that later permits semantic classification of the resources involved in the resource libraries using semantic 

descriptors. The semantic layer is the foundational element of the ODA (Ontology Driven Architecture) 

behind TELOS. 

We will now examine how the actual TELOS prototype uses the Technical ontology for its operations. 

Figure 7 displays the TELOS interface in a Web browser, with the three main tools open: the Resource 

Manager, the Scenario Editor and the Task Manager. 

 

Figure 7: TELOS main interface 



 11

 

The Resources Manager gives access to all the available resources classified according to the technical 

ontology. On figure 7, the aggregates’ class is expanded and the “My scenarios” class is selected showing 

the available scenarios on its right side. One scenario has been selected and is displayed in the Scenario 

Editor as a graphic interface showing a learning workflow involving three actors and four learning units 

organized sequentially. In the resource manager interface, it is possible to execute, edit or view any of the 

resources. The scenario editor provides the functionalities to link graphic objects in the scenario to the 

technical ontology and when this is done, users can run the scenario o by following the activity flow in the 

Task Manager.  

4. Scenario Aggregation and Semantic Referencing. 

Scenarios provide a high-level programming language for TELOS. This generic language is designed to 

be user-friendly to all TELOS users, including students/workers, teachers/designers or technologists and 

programmers/engineers, when they act, respectively, as composers at different levels of the cascade of 

systems. Figure 8 presents the Scenario Editor used to define and maintain scenario aggregates. The 

Scenario Editor aims to generalize both IMS-Learning Design methods as well as multi-actor business 

workflows. 

 

Figure 8: Linking scenario objects to classes or instances of the Technical Ontology 



 12

Various graphic symbols serve to represent actors, activities and operations, digital resources and 

conditions that influence the flow of control. All these objects are endowed with a semantic by linking 

them to the technical ontology. On figure 9, a document is selected and its execution semantic is given by 

selecting a class or an instance (GroupA-ini) of the technical ontology. In this way, TELOS knows what to 

do at the runtime, so the graphs can be processed by an execution engine called the Scenario Evaluator.  

The Scenario Evaluator will assure the coordination of actors, activities/operations/task and other 

resources in the scenario at delivery time. It enables engineers to combine resources into larger ones, 

technologist to built platform workflows and designers to build course designs or work processes for end 

users.  

The scenario on figure 8 was built by a designer that has constructed part of a course involving a teacher 

and two student teams. The following examples are less common. The next example shows (figure 9) how 

a technologist combines an existing platform with TELOS. The central component of the extended 

platform is a scenario for the designer to produce courses. This design scenario corresponds to the central 

tasks of the MISA instructional engineering method [2, 4]. Figure 9 shows part of this scenario that 

involves using Concept@, Télé-université’s actual course design platform, augmented with the TELOS 

scenario editor and other components. 

Figure 9: Technologist constructing an augmented LKMS platform for designers 

The design scenario starts with two parallel functions performed by an LKMA designer: design of a 

course backbone using the Concept@ LCMS and development of a knowledge and competency model for 

the course using the TELOS ontology editor. Let us note that actually, Concept@ helps produce an 

activity tree representing the course plan with the subdivision of the course into modules and activities. 



 13

This structure can be exported to a SCORM package. Many roles can be defined in Concept@ but this 

exceeds SCORM’s mono-actor capabilities. So information about roles/actors is lost when we open the 

corresponding graph in the TELOS scenario editor, produced by the TELOS operation that translates the 

SCORM file of the course structure to a graphic scenario. The next design phase proceeds graphically in 

the TELOS scenario editor to add the actors designed in Concept@ manually which is not a big task. 

There, more advanced flow of control can be added to better personalize learning based on knowledge and 

competency model.  

Another example is the scenario on figure 10. It has been built by an engineer aggregating a new service 

embedded in an operation called the “Batch LOM Extractor”. This operation takes a set of keywords, a 

number of LOM to find and the name of a destination folder in a repository of learning objects managed 

in the PALOMA software. The aim of this aggregated operation is to search Google with the given 

keywords, do some text mining on the resulting websites to extract some metadata according to the LOM 

standard, insert those LOMs into the requested PALOMA folder and open this folder into the PALOMA 

software interface to show the results to the user. 

 
Figure 10: Engineer constructing an operation aggregating services 

What we see here is the aggregation of software components built by different groups using different 

technologies that transfer data from one to another. The Google Search Service is launched using a SOAP 

Web service connector provided by the TELOS kernel. The Metadata Extractor is a C# component linked 

to the TELOS kernel by a C# connector. The DC to LOM conversion is a Scheme component linked 

through a Scheme connector. PALOMA is a Java applet linked through a Java connector. 

5. Conclusion – The Main Process and the Expected Benefits 

We now summarize the benefits we expect from this design and development process and more generally 

from ontology-driven systems.  



 14

1. Fidelity from Requirements to Code: The Capturing in an ontology of the main use cases and 

conceptual architecture concepts seem to improve the fidelity of the architecture to the 

requirements. Transforming the Conceptual ontology to a technical ontology embedded in the 

system ensure that the code will respect the architecture requirements. Also, the ontology-driven 

aspect of TELOS eases its evolution when new concepts will need to be integrated in the system.  

2. Global Systemic View. The technical ontology is a Virtual Campus model (VC). It provides a 

global view to support cohesion of the activities, from the upper level where an institution can 

create a global workflow to coordinate the major processes to run a virtual campus, to the next 

levels of a design scenario-based platform and scenario-based applications. 

3. Extended set of actors. Compared to the commercial LCMS in operation this new global 

approach leads to an unlimited set of actors. At any level, in principle, any number of actors can 

be defined and supported. 

4. Better process coordination. The fact that the system holds a model of the VC processes and 

support resources leads to better process coordination. Especially in distance universities, this 

provides better assurance that the quality of services will be maintained when the personnel 

changes, especially when it must provide products of his activities to other actors. 

5. Visible scenarios and workflows. Learning scenarios or workflows can always be consulted in a 

Web portal interface, changes to components or actors can be seen right away. Each user taking 

an actor’s role can visually see the context of the activities he has to perform, what resources to 

use or produce and with whom he is to interact with. 

6. Flexible and adaptable environments. Each environment operating according to a technical 

ontology which is part of the system enables very flexible and adaptable environments. If a new 

kind of actor, activity or resource needs to be introduced, this is done simply by modifying the 

instances or classes of the ontology, without changing the main operations of the system. 

7. Resource reusability is a goal pursued by many advocates of learning object repositories, but it is 

not that easy to achieve. Using ontologies to annotate each resource within the same framework, 

and adding connecting operations to take care of possible technology mismatches brings solutions 

to resource many reusability problems.  

8. System interoperability. With this new VC model, it is possible to bring different technologies 

and different platforms to work together. For example, a designer could built a course using a 

scenario editor in one platform, and transfer it to another platform to add new functionalities, for 

example personalized assistance. This process can be designed by defining the aggregation 

scenario between platforms at the LKMS level. 

9. Modeling for all. Modeling is not an easy task but it is important enough to made it accessible not 

only to engineers and technologists, but also to instructional designers, learners and trainers.  

10. Focus on learning and work designs. Finally, we hope the proposed approach to Virtual Campus 

modeling and operation will reduce the technology noise that is often present in eLearning 

applications when too much time is devoted to solving pure technology problems, instead of 

focusing on learning problems. We shope the activities will be more focused on pedagogy and 

quality of educational services. 

These approaches offer new possibilities but also pose additional challenges. The LORNET five year 

research project ending, some considerable refinements will happen. We will also need to ensure a 

transparent use of the tools that will be novel to most users. But our hope is that the results achieved in 

this project will lead the way to future research and developments and fruitful applications to Web-based 

learning and knowledge management systems. 



 15

References 

[1] Paquette, G. (1995) Modeling the virtual campus. in Innovating Adult Learning with Innovative 

Technologies (B. Collis and G. Davies Eds), Elsevier Science B.V., Amsterdam  

[2] Paquette, G. (2001) Designing virtual learning centers. In H. Adelsberger, B. Collis, J.P.E., ed.: 

Handbook on Information Technologies for Education & Training. International Handbook on 

Information Systems. Springer-Verlag  249–272 

[3] Paquette G.  (1996) La modélisation par objets typés: une méthode de représentation pour les 

systèmes d’apprentissage et d’aide à la tâche. Sciences et techniques éducatives, pp. 9-42, avril 1996 

[4] Paquette, G. M.Léonard, K. Lundgren-Cayrol, S. Mihaila and D. Gareau : (2006) Learning Design 

based on Graphical Knowledge-Modeling , Journal of Educational technology and Society ET&S , 

Special issue on Learning Design, January 2006 and Proceedings of the UNFOLD-PROLEARN Joint 

Workshop, Valkenburh, The Netherlands, September 2005 on Current Research on IMS Learning 

Design. 

[5] Wilson, S., Blinco, K., Rehak, D.: Service-oriented frameworks: Modelling the infrastructure for 

the next generation of e-learning systems. White Paper presented at alt-i-lab 2004 (2004)  

[6] Tetlow, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology driven 

architectures and potential uses of the semantic web in systems and softrware engineering. 

http://www.w3.org/2001/sw/BestPractices/SE/ODA/051126/ (2001)  

[7] Davies, J., van Harmelen, F., Fensel, D., eds.: Towards the Semantic Web: Ontology-driven 

Knowledge Management. John Wiley & Sons, Inc., New York, NY, USA (2002)  

[8] Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA explained : the model driven architecture : 

practice and promise. Boston: Addison-Wesley. 

[9] Paquette, G., Rosca, I.: Modeling the delivery physiology of distributed learning systems. 

Technology, Instruction, cognition and Learning 1-2 (2003) 183–209  

[10] Rosca, I. (2005) TELOS Conceptual Architecture, version 0.5. LORNET Technical Documents, 

LICEF research centrer, Télé-université, Montreal, 2005 

[11] Paquette, G., Rosca, I., Mihaila, S., Masmoudi, A.: Telos, a service-oriented framework to 

support learning and knowledge management. In Pierre, S., ed.: E-Learning Networked Environments 

and Architectures: a Knowledge Processing Perspective. Springer-Verlag (2006 in press)  

[12] Paquette, G., Rosca, I., Masmoudi, A., Mihaila, S.: Telos conceptual framework  v0.8. Lornet 

technical documentation, Télé-Université (2005)  

[13] W3C (2004) OWL Overview Document (http://www.w3.org/TR/2004/REC-owl-features-

20040210/) 

[14] Baader, F., D. Calvanese, D.McGuinness, D. Nardi, P,Patel-Schneider, editors (2003) The 

Description Logic Handbook. Cambridge University Press. 

[15] Paquette G. and Rogozan D. Primitives de représentation OWL-DL - Correspondance avec le 

langage graphique MOT+OWL et le langage des prédicats du premier ordre. TELOS documentation. 

LICEF Research Center. Montreal, Québec, 2006. 



 16

[16] IMS-LD (2003). IMS Learning Design. Information Model, Best Practice and Implementation 

Guide, Binding document, Schemas. http://www.imsglobal.org/learningdesign/index.cfm, last 

retrieved October 3, 2003 

[17] Magnan, F.: Distributed components aggregation for elearning: Conducting theory and practice. 

ILOR2005 Conference, http://www.lornet.org/presentation i2lor 05/papers/i2lor05-03.pdf (2005)  

[18] Correal. D., Marino O., Software Requirements Specification Document for General Purpose 

Function’s Editor (V0.4), LORNET Technical Documents, LICEF research centrer, Télé-université, 

Montreal. 

[19] Marino O. et al., Bridging the Gap between e-learning Modeling and Delivery through the 

Transformation of Learnflows into Workflows , in S. Pierre (Ed) E-Learning Networked 

Environments and Architectures: a Knowledge Processing Perspective, Springer-Verlag. 

[20] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, B. Kiepuszewski, Advanced Workflow 

Patterns, 7th International Conference on Cooperative Information Systems (CoopIS 2000) 

[21] Magnan, F. and Paquette, G.  (2006) TELOS: An ontology driven eLearning OS, SOA/AIS-06 

Workshop, Dublin, Ireland, June 2006 

[22] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow programming languages. 

ACM Comput. Surv., 36(1):1--34, 2004. 

[23] Germain G., Feeley M. and Monnier S. Concurrency Oriented Programming in Termite Scheme, 

Proceeding of Scheme and Functional Programming 2006, Portland 

[24] Armstrong J., Virding R., Wikström C. and Williams M. Concurrent Programming in Erlang. 

Prentice-Hall, second edition, 1996. 

[25] Boley H. Functional RuIeML: From Horn Logic with Equality to Lambda Calculus, Upgrade 

Vol. VI, issue no. 6, December 2005, CEPIS 

[26] ELF – eLearning framework, Web site at http://www.elframework.org/, last consulted June 14, 

2007. 

[27] OKI – Open Knowledge Initiative, at http://www.okiproject.org/, last consulted June 14, 2007 

 

  

 


